The realization space is [1 0 1 0 1 0 x1 - 1 x1 - 1 x1 - 1 1 1] [0 1 1 0 0 1 x1 - 1 x1^2 - x1 x1^2 + 2*x1*x2 - x1 + x2^2 - x2 -x1 - x2 + 1 x1] [0 0 0 1 1 -1 -x1*x2 - x2^2 -x1^2*x2 - x1*x2^2 -x1*x2 - x2^2 x2 x2] in the multivariate polynomial ring in 2 variables over ZZ within the vanishing set of the ideal Ideal with 2 generators avoiding the zero loci of the polynomials RingElem[2*x1 + x2 - 1, x2, x2 - 1, x1^2 + x1*x2 + x1 - 1, x1 + x2, x1 + x2 - 1, x1^2 + 2*x1*x2 - 2*x1 + x2^2 - x2 + 1, x1, x1 - 1, x1^2*x2 + x1^2 + x1*x2^2 + x1*x2 - 2*x1 - x2 + 1, x1^3*x2 + 2*x1^2*x2^2 - 2*x1^2*x2 + 2*x1^2 + x1*x2^3 - x1*x2^2 + 2*x1*x2 - 3*x1 - x2 + 1, x1^2*x2 - 2*x1^2 + x1*x2^2 + 3*x1 - 1, x1^2*x2 + x1^2 + 2*x1*x2^2 - x1*x2 - x1 + x2^3 - x2^2, x1^2 - x1*x2 - x1 - x2^2, x1^3 + 2*x1^2*x2 - 3*x1^2 + x1*x2^2 - x1*x2 + 3*x1 - 1, x2 + 1, x1*x2 - x1 + x2^2 + 1, x1^2*x2 - x1^2 + x1*x2^2 + 2*x1 - 1, x1^2*x2 + x1*x2^2 + x1 - 1]